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Abstract. Previously a many-body coherent potential approximation (CPA) was used to study
the double-exchange (DE) model with quantum local spinsS, both forS = 1/2 and for generalS
in the paramagnetic state. This approximation, exact in the atomic limit, was considered to be a
many-body extension of Kubo’s one-electron dynamical CPA for the DE model. We now extend our
CPA treatment to the case of generalS and spin polarization. We show that Kubo’s one-electron
CPA is always recovered in the empty-band limit and that our CPA is equivalent to dynamical
mean-field theory in the classical spin limit. We then solve our CPA equations self-consistently
to obtain the static magnetic susceptibilityχ in the strong-coupling limit. As in the case of the
CPA for the Hubbard model, we find unphysical behaviour inχ at half-filling and no magnetic
transition for any finiteS. We identify the reason for this failure of our approximation and propose
a modification which gives the correct Curie-law behaviour ofχ at half-filling and a transition to
ferromagnetism for allS.

1. Introduction

Recently there has been much interest in the perovskite manganite compounds T1−xDxMnO3

where T and D are trivalent and divalent cations respectively. These exhibit a rich variety
of phases including charge, orbital, ferromagnetic and antiferromagnetic ordering [1, 2].
Of particular interest is La1−xCaxMnO3 with x ∼ 0.3; in this compound ferromagnetic–
paramagnetic and metal–insulator transitions occur together, and for temperatures near the
critical temperature an applied magnetic field causes a very large reduction in electrical
resistance: this is the phenomenon known as colossal magnetoresistance (CMR).

The physically relevant electrons in the manganites are those from the Mn 3d levels, which
are split by the approximately cubic crystal field into triply degenerate t2g levels and higher-
energy doubly degenerate eg levels. Occupied eg levels are further split into two non-degenerate
levels by the Jahn–Teller effect. Electrons from the eg levels are able to hop between Mn sites
via the O atoms, forming a narrow conduction band, but those from the t2g levels are localized.
There is a strong Hund’s-rule coupling on the Mn sites, so the t2g electrons are usually modelled
as localS = 3/2 spins ferromagnetically coupled to the itinerant eg electrons. Atx = 0 there
is one eg electron per site so the system is a Mott insulator. Doping by D atoms produces holes
in the eg band which enables conduction to occur.

The simplest model for the CMR compounds, which neglects the eg degeneracy and any
coupling to phonon modes, is Zener’s [3] double-exchange (DE) model

H =
∑
ijσ

tij c
†
iσ cjσ − J

∑
i

Si · σi − h
∑

i

Lz
i (1)

wherei andj are Mn sites,cjσ (c†
iσ ) is aσ -spin conduction electron annihilation (creation)

operator,Si is a local spin operator,σi is a conduction electron spin operator,Lz
i = Sz

i + σ z
i
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is thez-component of the total angular momentum on a site,tij is the hopping integral with
discrete Fourier transformtk, J > 0 is the Hund’s-rule coupling constant, andh = gµBB is
the Zeeman coupling strength,B being the applied magnetic field. The number of conduction
electrons per atomn is assumed to be given byn = 1 − x. The idea of the DE model is
that hopping of eg electrons between neighbouring sites is easier if the local spins on the sites
are parallel, so an effective ferromagnetic coupling between the local spins is induced by the
conduction electrons lowering their kinetic energy. Double-exchange coupling differs from
conventional Heisenberg coupling by being (for classical local spins) of the form cos(θij /2)

rather than cos(θij ), whereθij is the angle between thei- andj -site local spins.
According to Milliset al [4,5] the CMR effect arises from a competition between double-

exchange coupling, which produces a tendency towards the conducting ferromagnetic state,
and strong coupling to phonon modes, which tends to localize the electrons via self-trapping.
In a previous paper [9] we confirmed that the DE model above cannot account for the very high
resistivity of the paramagnetic state. Moreover experiments show that coupling to the crystal
lattice is important [6–8]. In this paper however we will complete our study of the simple DE
model, aiming to understand the purely electronic properties of CMR systems modelled by
(1) before tackling more realistic and complicated models. We concentrate particularly on the
magnetic properties.

In [9] we derived an approximation for the one-electron Green function which was based
on Hubbard’s scattering correction approximation for the Hubbard model [10]. In the Hubbard
model this approximation is derived by decoupling the Green-function equations of motion
according to an alloy analogy in which electrons of one spin are frozen whilst the Green
function for those of the opposite spin is calculated. For the finite-S DE model this approach is
complicated by the possibility of dynamic spin scattering—conduction electrons exchanging
angular momentum with the local electrons. We obtained an approximation which, like
Hubbard’s, was exact in the atomic limit for all band filling. Since Hubbard’s approximation is
equivalent to the coherent potential approximation (CPA) in the alloy analogy for the Hubbard
model, and our approximation reduces to a one-electron dynamical CPA due to Kubo [11] in
the empty-band limit of the DE model, we regard our approximation as a many-body extension
of the CPA.

In [9] we concentrated on simple cases in which the CPA system of equations of motion
closed easily, and calculated the electronic structure and resistivity of the paramagnetic state.
In section 2 we formulate and solve the general CPA equations. In section 3 we then calculate
the static magnetic susceptibility self-consistently within the CPA. In section 4 we compare
our CPA in the classical spin limit with dynamical mean-field theory, and in section 5 the CPA
is modified so as to improve the behaviour of the susceptibility. A summary and outlook are
given in section 6.

2. Solution of the CPA equations

In this section we will use equation of motion (EOM) decoupling approximations to derive
an expression for the one-electron Green functionG

ij
σ = 〈〈ciσ ; c

†
jσ 〉〉 of the DE model.

In a previous paper [9] we obtainedGij
σ in the special cases of zero-field paramagnetism

and saturated ferromagnetism for all values ofS, but only considered the case of arbitrary
magnetization forS = 1/2. Here we extend this previous treatment to the case of generalS

and spin polarization. The decoupling approximations used are direct extensions of those used
in [9], which were in turn generalizations of Hubbard’s scattering correction approximation [10]
for the Hubbard model.
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We split the Green functions into componentsG
ij
σ = G

ij+
σ + G

ij−
σ whereG

ijα
σ describes

propagation via singly (α = −) and doubly (α = +) occupied sites:Gijα
σ = 〈〈nα

i ciσ ; c
†
jσ 〉〉

wheren+
i = ni , n−

i = 1 − ni , n+
iσ = niσ , andn−

iσ = 1 − niσ . Hereniσ = c
†
iσ ciσ and

ni = ni↑ + ni↓. Now the cases considered in [9] were chosen so that the system of EOMs
could be closed using only the Green functionsG

ijα
σ , 〈〈Sz

i n
α
i ciσ ; c

†
jσ 〉〉, and〈〈S−σ

i nα
i ci−σ ; c

†
jσ 〉〉

whereS−σ
i = S−

i andS+
i for σ = ↑, ↓ respectively; here we will also need the Green functions

〈〈(Sz
i )

mnα
i ciσ ; c

†
jσ 〉〉 and〈〈(Sz

i )
m−1S−σ

i nα
i ci−σ ; c

†
jσ 〉〉 for m > 1 in order to close the system. It

is simplest to work with the Green functions

Sijα
σ (λ) =

〈〈
eλSz

i nα
i ciσ ; c

†
jσ

〉〉
(2a)

T ijα
σ (λ) =

〈〈
eλSz

i S−σ
i nα

i ci−σ ; c
†
jσ

〉〉
(2b)

which are in generating function form so that

∂mSijα
σ /∂λm|λ=0 = 〈〈(Sz

i )
mnα

i ciσ ; c
†
jσ 〉〉

and

∂m−1T ijα
σ /∂λm−1|λ=0 = 〈〈(Sz

i )
m−1S−

i nα
i ci↓; c

†
jσ 〉〉.

For notational simplicity we will work forσ = ↑; theσ = ↓ EOM can be obtained by
making the replacementsciσ 7→ ci−σ , c

†
iσ 7→ c

†
i−σ , Sz

i 7→ −Sz
i , S±

i 7→ S∓
i , h 7→ −h, and

λ 7→ −λ. Recall that with the fermionic definition of Green functions,

〈〈A; C〉〉ε = −i
∫ ∞

0
dt exp(iεt)〈{A(t), C}〉

the EOM is

ε 〈〈A; C〉〉ε = 〈{A, C}〉 + 〈〈[A, H ]; C〉〉ε . (3)

We use the fact thatSijα
σ (λ) andT

ijα
σ (λ) are in generating function form to write their exact

EOMs in the form(
ε +

h

2
+

J

2

∂

∂λ

)
S

ijα

↑ (λ, ε) +
J

2
eλδα+T

ijα

↑ (λ, ε)

= δij

〈
eλSz

nα
↓
〉
+

∑
k

tik

〈〈
eλSz

i nα
i↓ck↑; c

†
j↑

〉〉
ε

+
〈〈

eλSz
i

[
nα

i↓, H0
]
ci↑; c

†
j↑

〉〉
ε

(4)

for S
ijα

↑ (λ, ε) and(
ε +

h

2
− J

2

(
δα− +

∂

∂λ

))
T

ijα

↑ (λ, ε) +
J

2
e−λδα+

(
S(S + 1) + α

∂

∂λ
− ∂2

∂λ2

)
S

ijα

↑ (λ, ε)

= − αδij

〈
eλSz

S−σ +
〉
+

∑
k

tik

〈〈
eλSz

i S−
i nα

i↑ck↓; c
†
j↑

〉〉
ε

+
〈〈

eλSz
i S−

i

[
nα

i↑, H0
]
ci↓; c

†
j↑

〉〉
ε

(5)

for T
ijα

↑ (λ, ε). Here

H0 =
∑
ijσ

tij c
†
iσ cjσ

is the kinetic part of the Hamiltonian and we have dropped the site indices in the
expectations, assuming the system to be in a homogeneous phase (i.e. we will not
consider antiferromagnetism). If one works directly with EOMs for the Green functions
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〈〈(Sz
i )

mnα
i ciσ ; c

†
jσ 〉〉 and〈〈(Sz

i )
m−1S−

i nα
i ci↓; c

†
jσ 〉〉, as in [9], one is faced with 4S + 1 algebraic

equations for generalS. Here, using the generating functions, these algebraic equations are
reduced to just two differential equations where differentiation with respect toλ corresponds
to the coupling between the different algebraic equations.

These EOMs form a closed system apart from the undetermined Green functions on the
right-hand sides which correspond to the effects of hopping. The decoupling procedure entails
making approximations for these kinetic terms which close the system of equations; since these
terms are proportional tot this procedure is exact in the atomic limittij → 0. As mentioned in
the introduction the idea of the alloy analogy is to neglect the effects of the kinetic partH0 of
the Hamiltonian on electrons of one spin whilst considering the propagation of an electron of
the opposite spin. Accordingly we neglect the final terms of (4) and (5) since the occupation
number operators in these Green functions are considered to be frozen in time. It remains to
find closed approximations for∑

k

tik〈〈exp(λSz
i )n

α
i↓ck↑; c

†
j↑〉〉ε

and ∑
k

tik〈〈exp(λSz
i )S

−
i nα

i↑ck↓; c
†
j↑〉〉ε .

The derivation of scattering correction approximations for these terms is identical to that of [9]
apart from the occurrence of the factor exp(λSz

i ) and will not be repeated here. In fact we use∑
k

tik

〈〈
eλSz

i nα
i↓ck↑; c

†
j↑

〉〉
ε

≈ 〈
eλSz

nα
↓
〉 ∑

k

tik

〈〈
ck↑; c

†
j↑

〉〉
ε

+ J↑(ε)
〈〈

(eλSz
i nα

i↓ − 〈
eλSz

nα
↓
〉
)ci↑; c

†
j↑

〉〉
ε

(6a)

= 〈
eλSz

nα
↓
〉 (∑

k

tikG
kj

↑ (ε) − J↑(ε)G
ij

↑ (ε)

)
+ J↑(ε)S

ijα

↑ (λ, ε) (6b)

∑
k

tik

〈〈
eλSz

i S−
i nα

i↑ck↓; c
†
j↑

〉〉
ε

≈ − α
〈
eλSz

S−σ +
〉 ∑

k

tikG
kj

↑ (ε) + J↓(ε + h)
〈〈

eλSz
i S−

i nα
i↑ci↓; c

†
j↑

〉〉
ε

+ J↑(ε)
〈〈

α
〈
eλSz

S−σ +
〉
ci↑; c

†
j↑

〉〉
ε

(6c)

= − α
〈
eλSz

S−σ +
〉 (∑

k

tikG
kj

↑ (ε) − J↑(ε)G
ij

↑ (ε)

)
+ J↓(ε + h)T

ijα

↑ (λ, ε) (6d)

whereJσ (ε) = ε − 6σ(ε) − Gσ(ε)−1. Here6σ(ε) is the self-energy, local within this
approximation, andGσ(ε) = Gii

σ (ε) is the local component of the Green function.Jσ (ε)

contains the effects of coherent propagation of the electron as aσ -spin from sitei back to
sitei via paths avoiding the site at intermediate stages [12]. Note that if an↑-spin electron of
energyε becomes a↓-spin by exchanging angular momentum with a local spin it must then
propagate at energyε +h—hence the occurrence ofJ↓(ε +h) in (6c) and (6d) above. It may be
seen that approximations (6a) and (6c) close the system of equations (4) and (5). No further
approximations are made.

For convenience we now defineEσ (ε) = ε − Jσ (ε), which will later be related to the
Weiss function of dynamical mean-field theory [13],Eh

σ (ε) = Eσ (ε + hδσ↓) + σh/2, which
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puts the energy shift effects of the magnetic field intoEσ , and

λij
σ (ε) = δij +

∑
k

tikG
kj
σ (ε) − Jσ (ε)Gij

σ (ε). (7)

We make the above approximations so that (4) and (5) become Eh
↑(ε) + (J/2)

∂

∂λ
(J/2)eλδα+

(J/2)e−λδα+

[
S(S + 1) + α

∂

∂λ
− ∂2

∂λ2

]
Eh

↓(ε) − (J/2)

(
δα− +

∂

∂λ

)
 (

S
ijα

↑ (λ, ε)

T
ijα

↑ (λ, ε)

)

≈ λ
ij

↑ (ε)

( 〈eλSz

nα
↓〉

−α〈eλSz

S−σ +〉
)

. (8)

This is a coupled pair of linear differential equations (with respect toλ) of first and second
order respectively. The first equation is used to eliminateT

ijα

↑ (λ, ε) in terms ofSijα

↑ (λ, ε):

T
ijα

↑ (λ, ε) = 2

J
e−λδα+(λ

ij

↑ (ε)
〈
eλSz

nα
↓
〉 − Eh

↑(ε)S
ijα

↑ (λ, ε) − J

2

∂

∂λ
S

ijα

↑ (λ, ε)). (9)

Substituting into the second equation we obtain a first-order equation forS
ijα

↑ (λ, ε):

∂

∂λ
S

ijα

↑ (λ, ε) +

(
(J/2)S(S + 1) − Eh

↑(ε)((2/J )Eh
↓(ε) + α)

Eh
↑(ε) − Eh

↓(ε)

)
S

ijα

↑ (λ, ε)

= −
〈

((2/J )Eh
↓(ε) + α − Sz)eλSz

nα
↓ + αeλ(δα++Sz)S−σ +

Eh
↑(ε) − Eh

↓(ε)

〉
λ

ij

↑ (ε). (10)

This equation is of the form

∂S(λ)

∂λ
+ PS(λ) = R(λ) (11)

whereP is independent ofλ, which has the solution

S(λ) = Ce−Pλ + e−Pλ

∫ λ

dλ ePλR(λ) (12)

whereC is a constant of integration. Furthermore, by inserting local spin projection operators
into definition (2a) of S

ijα

↑ (λ, ε) it may be seen that

S
ijα

↑ (λ, ε) =
S∑

m=−S

a
ijα

m↑(ε) exp(mλ)

wherea
ijα

m↑(ε) is independent ofλ. Since in generalP is not an integer we must haveC = 0.
Hence we find

S
ijα

↑ (λ, ε) =
〈

(Eh
↓(ε) + (J/2)(α − Sz))eλSz

nα
↓ − ((J/2)δα−)eλSz

S−σ +

(Eh
↑(ε) + JSz/2)(Eh

↓(ε) + (J/2)(α − Sz)) − (J 2/4)(S + αSz)(S + 1− αSz)

+
((J/2)δα+)eλ(Sz+1)S−σ +

(Eh
↑(ε) + (J/2)(Sz + 1))(Eh

↓(ε) − JSz/2) − (J 2/4)(S − Sz)(S + 1 +Sz)

〉
× λ

ij

↑ (ε) (13)
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where we adopt the convention that a quotient of operators,B divided byA, meansA−1B.
Substituting into (9) we also obtain

T
ijα

↑ (λ, ε) =
〈

eλ(Sz−δα+)((J/2)(Sz + αS)(Sz − α(S + 1))nα
↓ + δα−(Eh

↑(ε) + JSz/2)S−σ +)

(Eh
↑(ε) + JSz/2)(Eh

↓(ε) + (J/2)(α − Sz)) − (J 2/4)(S + αSz)(S + 1− αSz)

− δα+(E
h
↑(ε) + (J/2)(1 +Sz))eλSz

S−σ +

(Eh
↑(ε) + (J/2)(1 +Sz))(Eh

↓(ε) − JSz/2) − (J 2/4)(S − Sz)(S + 1 +Sz)

〉
× λ

ij

↑ (ε). (14)

It is easy to check that these expressions reduce to those obtained in [9] in the appropriate
cases.

We are mostly interested in the local components of the Green functions,Sα
↑ = Siiα

↑ and
T α

↑ = T iiα
↑ , and in the following we drop site indices. Note thatλii

σ (ε) = 1; this follows from

the relationλij
σ (ε) = G

ij
σ (ε)/Gσ (ε) which is easy to obtain from the definition (7) ofλ

ij
σ (ε)

using Fourier transforms and the locality of6σ(ε), as in section 3.1 of [9].
SinceEh

σ is a functional ofGσ , equation (13) withi = j determinesGσ , in principle,
in terms of the expectations〈exp(λSz)〉, 〈exp(λSz)nσ 〉, and〈exp(λSz)S∓σ±〉 as functions of
λ. These expectations must be evaluated self-consistently in terms ofSα

σ (λ) andT α
σ (λ). The

equation forGσ simplifies if we approximate the physical (simple cubic tight-binding) bare
density of states (DOS) by an elliptic DOS,D(ε) = 2

√
W 2 − ε2/(πW) whereW is the half-

bandwidth; for this DOS it may be shown thatEσ (ε) = ε − (W 2/4)Gσ (ε), soEσ is an explicit
function ofGσ . We now define the functional

I[g] =
∮

γ

dε

2π i
f (ε − µ)g(ε) (15)

wheref is the Fermi function,µ is the chemical potential, andγ is the anticlockwise contour
lying just below and just above the real axis. This functional is useful owing to the usual sum
rule

I [〈〈A; C〉〉] = 〈CA〉 (16)

from which it follows (exactly) that

I [
Sα

σ (λ)
] = 〈

eλSz

nα
−σ nσ

〉
(17a)

I [
T α

σ (λ)
] = 〈

eλSz

S−σ σ σ
〉
δα−. (17b)

The expectations〈exp(λSz)nσ 〉 and〈exp(λSz)S∓σ±〉 can therefore be obtained directly from
the sum rule as〈exp(λSz)nσ 〉 = I[Sσ (λ)], whereSσ (λ) = ∑

α Sα
σ (λ), and〈exp(λSz)S−σ +〉 =

I[T↑(λ)]. However〈exp(λSz)〉 must be obtained indirectly, in principle, by solving the system
of equations obtained by applying theI-functional to (13) and (14). Knowledge of〈exp(λSz)〉
is equivalent to knowledge ofP(Sz), the probability distribution function for local spins, and it
is not clear that this quantity will be accurately obtained from the (approximate) single-electron
Green functions that we have considered here. In fact, as will be seen later, the self-consistent
determination of this quantity causes problems with our CPA.

We now specialize to three important cases of particular interest:n = 0, J = ∞, and
S = ∞, in which (13) and (14) simplify considerably. The results below generalize previous
work [9] which was restricted, for general magnetization, to the caseS = 1/2.



Magnetic susceptibility of the double-exchange model 10517

2.1. The empty-band limit

In [11] Kubo used a one-electron dynamical CPA to derive an expression forG↑ valid in the
low-density limitn → 0. From (13) withλ = 0 we calculateG↑ in this limit as

G↑ =
〈

Eh
↓ − (J/2)(1 +Sz)

(Eh
↑ + (J/2)Sz)(Eh

↓ − (J/2)(1 +Sz)) − (J 2/4)(S + 1 +Sz)(S − Sz)

〉
. (18)

This is equivalent to Kubo’s equation forG↑ so our decoupling approximation is indeed a
many-body extension of the CPA.

2.2. The strong-coupling limit

In the physical systems for which the double-exchange model was introduced,J � tij and
0 < n < 1. In this situation the chemical potential lies in the lowest band near−JS/2, so
we shift the energy origin,Eh

σ 7→ Eh
σ − JS/2, and letJ → ∞. Equations (13) and (14) then

become

Sα
↑(λ) =

〈
eλSz (S + 1 +Sz)n−

↓ + S−σ +

(S + 1 +Sz)Eh
↑ + (S − Sz)Eh

↓

〉
δα− (19a)

T α
↑ (λ) =

〈
eλSz

(S − Sz)
(S + 1 +Sz)n−

↓ + S−σ +

(S + 1 +Sz)Eh
↑ + (S − Sz)Eh

↓

〉
δα−. (19b)

2.3. The classical spin limit

In dynamical mean-field theory (DMFT), a local approximation exact in the infinite-
dimensional limit [13], the double-exchange model can be solved exactly in the classical spin
limit S → ∞ in which the local spins can be treated as static [14]. Since our approximation
is also local it is interesting to compare our results with DMFT in this limit. We letS → ∞
in (13) and (14), scalingJ , λ, h, andT α

σ (λ) as 1/S, and obtain

Sα
↑(λ) =

〈
eλSz (E↓ − (J/2)Sz)nα

↓ + α(J/2)S−σ +

(E↑ + (J/2)Sz)(E↓ − (J/2)Sz) − (J 2/4)(1 − (Sz)2)

〉
(20a)

T α
↑ (λ) =

〈
eλSz (J/2)((Sz)2 − 1)nα

↓ − α(E↑ + (J/2)Sz)S−σ +

(E↑ + (J/2)Sz)(E↓ − (J/2)Sz) − (J 2/4)(1 − (Sz)2)

〉
(20b)

where bySz andS− we meanSz/S andS−/S respectively. Note that in this limitEh
σ = Eσ .

In section 4 below we will derive these Green functions within DMFT for comparison, and it
will be found that our CPA agrees with DMFT forSα

σ andTσ , but not forT ±
σ .

3. Self-consistent CPA susceptibility

In this section we calculate the static magnetic susceptibilityχ of the zero-field paramagnetic
state. For simplicity we specialize to the strong-coupling limitJ = ∞ most favourable to
ferromagnetism and use the elliptic bare DOS mentioned in the previous section. We drop
the spin suffices on zero-field paramagnetic state quantities and defineδA to be the first-order
deviation of any quantityA from its value in this state. ThusδA is proportional to the applied
magnetic fieldB or equivalently toδ〈Lz〉 = δ〈Sz + σ z〉. We proceed by calculatingδ〈Lz〉 in
terms of the Zeeman energyh = gµBB and using

χ = (gµB)2 lim
h→0

(δ〈Lz〉/h).
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We first derive a couple of useful identities. Equations (19a) and (19b) imply that
Tσ (λ) = (S − ∂/∂λ)Sσ (λ). We apply the sum rule (16)–(17b) to this relation and, using
the fact that all the self-consistently determined expectations are real, obtain the rather obvious
results 〈

eλSz

S · σ
〉 = (S/2)

〈
eλSz

n
〉

(21a)〈
Szn

〉 = 2S
〈
σ z

〉
. (21b)

These serve as a check on our approximation and will later be used to manipulate expectations.
The Green functions are especially simple in the (J = ∞) zero-field paramagnetic state:

from (19a) with λ = 0 andα = − we have

G(ε) = (S + 1− n/2)/(2S + 1)

E(ε)
(22)

which corresponds to a band of weight(S + 1 − n/2)/(2S + 1) per spin. In the elliptic DOS
case, for whichE(ε) = ε − (W 2/4)G(ε), we can easily solve this equation to obtain

G(ε) = 2

W 2

(
ε −

√
ε2 − W̄ 2

)
(23)

where

W̄ = W

√
(S + 1− n/2)/(2S + 1)

is the halfwidth of the renormalized band, which is also elliptic.
We expand the denominator of (19a) in powers ofSz:

S↑(λ) =
∞∑

r=0

(Eh
↓ − Eh

↑)r

((S + 1)Eh
↑ + SEh

↓)r+1

∂r

∂λr

〈
eλSz

(
(S + 1 +Sz)n−

↓ + S−σ +
)〉

. (24)

Owing to the presence of the factorEh
↓ − Eh

↑, which is zero in theh = 0 paramagnetic state,
only ther = 0 andr = 1 terms contribute toδS↑(λ). From (24) we find

δS↑(λ) = δEh
↓(∂/∂λ − S) − δEh

↑(∂/∂λ + S + 1)

(2S + 1)2E2

〈
eλSz

((S + 1 +Sz)n−
↓ + S−σ +)

〉
+

δ
〈
eλSz

((S + 1 +Sz)n−
↓ + S−σ +)

〉
(2S + 1)E

(25)

where the paramagnetic state value, which may easily be evaluated, is used for the first
expectation. Now it may be shown thatδµ = 0, soδI[A] = I[δA] for any A. We calc-
ulateδI[(∂/∂λ)(S↑(λ) + S↓(λ))]λ=0 from (25), and using (21a) and (21b) and the sum rule
(17a) find

δ
〈
Sz(n↑ + n↓)

〉 = 2Sδ
〈
σ z

〉 = n

S + 1− n/2

(
(S + 1)δ

〈
Lz

〉 − (2S + 1)δ
〈
σ z

〉)
+

2S(S + 1− n/2)

3(2S + 1)2
I

[
δEh

↓ − 2(S + 1) δEh
↑

E2

]
. (26)

SinceEh
σ (ε) = ε + h/2 − (W 2/4)Gσ (ε + hδσ↓) we have

δEh
σ = h/2 − (W 2/4)(δGσ + h δσ↓G′) (27)

whereG′(ε) = dG(ε)/dε. By settingλ = 0 in (25) and using (21a), (21b), and (27), we
obtain

δGσ = σ
δ 〈Lz〉 E + h(W̄/W)2(SW 2G′/6 − (S + 1/2))

(2S + 1)E2 − ((2/3)S + 1)W̄ 2/4
. (28)
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Note that sinceδGσ ∝ σ , spectral weight is transferred between the different spin bands at
constant energy, soδµ = 0 as mentioned above. Equation (28) illustrates howδ〈Lz〉, and
henceδ〈Sz〉, is determined indirectly in terms of the Green functions rather than by a direct
sum rule of the type of (17a) and (17b).

We use (27) and (28) to eliminate theδEh
σ s from (26) in terms ofh andδ〈Lz〉. By applying

I to (28) we obtain an expression forδ〈σ z〉. We then eliminateδ〈σ z〉 between this equation
and (26) and solve the resulting equation forχ = (gµB)2δ〈Lz〉/h:

χ = − (gµB)2

2n

(
(4/3)S(S + 1) + ((4/3)S + 1)n

) I[G′]
Q − 1

(29a)

Q = I
[

E

E2 − ν2W̄ 2/4

]
(29b)

whereν2 = ((2/3)S + 1)/(2S + 1). Note that forS = 1/2 this expression forχ does reduce
to the one given (for theS = 1/2 case) in [15]. We can simplifyQ by changing variables to
z = W 2G(ε)/(2W̄ ) so that

dε = (2W̄/W 2)G′(ε)−1 dz = (W̄/2)(1 − (2W̄/W 2)2G(ε)−2) dz = (W̄/2)(1 − z−2) dz

and from the functional form (23) ofG it may be seen that the contourγ for ε becomes−γ ′,
the clockwise unit circle, forz. Hence

Q =
∮

γ ′

dz

2π i
f̄

(
z + z−1

2
− µ̄

)
z − z−1

z2 − ν2
(30)

whereµ̄ = µ/W̄ andf̄ (ε) = f (W̄ε). The same change of variables can be used to show that

I[G′] = −2W̄

W 2

∮
γ ′

dz

2π i
f̄

(
z + z−1

2
− µ̄

)
. (31)

Now a second-order transition to ferromagnetism corresponds to a divergence inχ ,
i.e. Q = 1. From (28) withh = 0 and (29b) it may be seen, using the sum rule, that
δ〈Lz〉Q/(2S+1) = I[δG↑] = δ〈σ z〉 (forh = 0). The equationQ = 1 for a zero-field magnetic
transition is therefore equivalent to the consistency condition 2δ〈σ z〉 = δ〈Sz + σ z〉/(S + 1/2),
which certainly holds atn = 1 but not atn = 0. Integral (30) can be evaluated analytically in
the limits of zero and infinite temperature where the Fermi function is of a simple form and
the results are plotted in figure 1. It is clear that within the CPA there is no magnetic transition
for 0 < n < 1, as is the case for the CPA for the Hubbard model [16]. This appears to
be a considerable drawback of our approximation given that the ferromagnetic–paramagnetic
phase transition is a major reason for interest in the double-exchange model. We will propose
a method for circumventing this problem in section 5.

We now consider the behaviour ofχ at n = 0, 1. In these cases electron hopping does
not occur and the system consists of a lattice of free local moments of magnitudeS ′ = S and
S + 1/2 respectively, so we expectχ to take the Curie-law form,χC = (gµB)2βS ′(S ′ + 1)/3
whereβ = (kBT )−1 is the inverse temperature. We calculateχ in these cases by expanding
the integrals in (30) and (31) in powers ofn or 1− n. At n = 0 we findχ = χC with S ′ = S

as expected, but atn = 1 we findχ = χCφ (with S ′ = S + 1/2) where

φ =
(∮

γ ′
dz exp(β̄(z + z−1)/2)

)/(∮
γ ′

dz exp(β̄(z + z−1)/2)(z − z−1)/(z2 − ν2)

)
(32)

andβ̄ = W̄β. Now φ → 1 asβ → 0 so the Curie law is obtained at high temperature, but as
β → ∞ we findφ → 8S2/(3(2S + 1)(4S + 3)) 6= 1 so Curie-law behaviour does not extend
over the whole temperature range. Note thatφ(β = ∞) 6= 1 even atS = ∞ where, as will be
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Figure 1. TheQ-function versus fillingn at temperatureT = 0 andT = ∞.

shown in the next section, our Green-function equations reduce to DMFT. The reasons for this
unphysical behaviour, and a way to avoid it, are discussed in section 5. In figure 2 below we
compareχ atn = 1 andS = ∞ with χC and the low-temperature asymptoteχC/3. In figure 3
we plotχ−1 atS = ∞ andn = 0.75, comparing it with the Curie-law and DMFT values, the
DMFT plot only being displayed for the paramagnetic phase.
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Figure 2. TheS = J = ∞ magnetic susceptibilityχ for n = 1 compared with its low-temperature
asymptote and the Curie law.
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Figure 3. TheS = J = ∞ inverse magnetic susceptibilityχ−1 for n = 0.75 compared with the
Curie-law and DMFT values.

4. Comparison with dynamical mean-field theory atS = ∞

In this section we will obtain equations for theSα
σ andT α

σ Green functions within dynamical
mean-field theory (DMFT) atS = ∞ and compare them with equations (20a) and (20b) of
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the CPA. The DMFT single-site effective actionS̃ of the DE model is [14]

S̃ =
∫ β

0

∫ β

0
dτ dτ ′ ∑

σ

c†
σ (τ )Eσ (τ − τ ′)cσ (τ ′) − J

2

∫ β

0
dτ

[
Sz(τ )

[
n↑(τ ) − n↓(τ )

]
+ S+(τ )σ−(τ ) + S−(τ )σ +(τ )

]
− h

∫ β

0
dτ

[
Sz(τ ) + σ z(τ )

]
+ i

∫ β

0
dτ Szτ ∂τ tan−1

(
Sy(τ )/Sx(τ )

)
(33)

whereEσ describes the self-consistently determined coupling with the conduction electron
bath. Herec†

σ (τ ) andcσ (τ ) are Grassmann variables [17]. Now DMFT for the DE model
is exactly solvable in the classical spin limitS → ∞ whereS(τ ) becomesτ -independent
(we scaleJ andh as 1/S), since forS constantS̃ is diagonal in the Matsubara frequency
representation:

S̃ = −
∑

n

( c
†
n↑ c

†
n↓ )

[
En↑ + (J/2)Sz (J/2)S−

(J/2)S+ En↓ − (J/2)Sz

] (
cn↑
cn↓

)
− βhSz (34a)

=
∑

n

( c
†
n↑ c

†
n↓ ) An

(
cn↑
cn↓

)
− βhSz =

∑
n

S̃n − βhSz (34b)

defining the matrixAn and the components̃Sn of S̃. Here

Enσ = −
∫ β

0
dτ exp(iωnτ)Eσ (τ)

andωn is a fermionic Matsubara frequency. Note that as shown in [13] the self-consistency
condition forEnσ can be written asEnσ = 6(iωn) + G(iωn)

−1, soEnσ is just our quantity
Eσ (iωn).

In terms ofS̃ the partition functionZ is given by

Z =
∫

d2S

∫ (∏
nσ

dc†
nσ dcnσ

)
e−S̃ =

∫
d2S eβhSz

∏
n

∫ (∏
σ

dc†
nσ dcnσ

)
e−S̃n (35)

where
∫

d2S is the integral over the local spin direction. All site-diagonal correlation functions
can be calculated explicitly in terms of theEnσ s, for example the one-electron Green function
is given by〈〈

ci↑; c
†
i↑

〉〉
iωn

= −
〈
cn↑c

†
n↑

〉
= − 1

Z

∫
d2S

(∏
mσ

dc†
mσ dcmσ

)
e−S̃cn↑c

†
n↑. (36)

It is convenient to work with the generating function

Zn =
∫ (∏

σ

dc†
nσ dcnσ

)
exp(−S̃n +

∑
σ

(η†
nσ cnσ + c†

nσ ηnσ )) (37a)

= det(An) exp

[
( η

†
n↑ η

†
n↓ ) A−1

n

(
ηn↑
ηn↓

)]
. (37b)

In terms ofZn the partition function

Z =
∫

d2S exp(βhSz)

(∏
n

Zn

)
η′=η†=0

=
∫

d2S exp(βhSz)
∏
n

det(An)

and the local spin probability distribution function

P(S) = Z−1 exp(βhSz)

(∏
n

Zn

)
η′=η†=0

.
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Note that

〈U(S)〉 =
∫

d2S P (S)U(S)

for anyU .
Explicitly, our full Green functions are given inS = ∞ DMFT by

S↑(λ, iωn) = 1

Z

∫
d2S e(λ+βh)Sz

(
d2

dη
†
n↑ dηn↑

∏
n′

Zn′

)
η′=η†=0

(38a)

T↑(λ, iωn) = 1

Z

∫
d2S e(λ+βh)Sz

S−
(

d2

dη
†
n↓ dηn↑

∏
n′

Zn′

)
η′=η†=0

(38b)

and these expressions are easily evaluated to give

S↑(λ, iωn) =
〈
eλSz En↓ − (J/2)Sz

(En↑ + (J/2)Sz)(En↓ − (J/2)Sz) − (J 2/4)(1 − (Sz)2)

〉
(39a)

T↑(λ, iωn) = −J

2

〈
eλSz 1 − (Sz)2

(En↑ + (J/2)Sz)(En↓ − (J/2)Sz) − (J 2/4)(1 − (Sz)2)

〉
. (39b)

Summing theS = ∞ CPA expressions (20a) and (20b) over α we obtain the analytic
continuations (from the Matsubara frequencies) of (39a) and (39b) respectively, i.e. in the
classical spin limit our CPA agrees with DMFT forSσ (λ) andTσ (λ). This is important since
DMFT is known to be exact for dimensionD = ∞ [13] and is perhaps the most natural local
approximation forD finite.

Similarly we can calculate theα = ± components of these Green functions within DMFT
as

S+
↑(λ, iωn) = 1

β

∑
n′

〈
eλSz (En↓ − (J/2)Sz)(En′↑ + (J/2)Sz) − (J 2/4)(1 − (Sz)2)

det(An) det(An′)

〉
(40a)

T +
↑ (λ, iωn) = J

2

1

β

∑
n′

〈
eλSz

(1 − (Sz)2)
En↓ − En′↓

det(An) det(An′)

〉
(40b)

andS−
↑ = S↑ − S+

↑, etc. Now for a functiong(z) analytic off the real axis

β−1
∑

n

g(iωn) = I[g]

so applying this to then′-summations in (40a) we find

S+
↑(λ, iωn) =

〈
eλSz (En↓ − JSz/2)(I1↑(Sz) + JSzI2(S

z)/2) − (J 2/4)(1 − (Sz)2)I2(S
z)

(En↑ + (J/2)Sz)(En↓ − (J/2)Sz) − (J 2/4)(1 − (Sz)2)

〉
(41)

where

I1↑(Sz) = I
[

E↑
(E↑ + (J/2)Sz)(E↓ − (J/2)Sz) − (J 2/4)(1 − (Sz)2)

]
(42a)

I2(S
z) = I

[
1

(E↑ + (J/2)Sz)(E↓ − (J/2)Sz) − (J 2/4)(1 − (Sz)2)

]
. (42b)

It may be shown using the sum rules (17a) and (17b) that

〈(Sz)m(I1↑(Sz) + JSzI2(S
z)/2)〉 = 〈(Sz)mn↓〉
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and

(J/2)〈(Sz)m(1 − (Sz)2)I2(S
z)〉 = −〈(Sz)mS−σ +〉

for anym, so in (41) we can replaceI1↑(Sz)+JSzI2(S
z)/2 withn↓ and(J/2)(1−(Sz)2)I2(S

z)

with −S−σ +. A similar procedure can be carried out for (40b), and we obtain

S+
↑(λ, iωn) =

〈
eλSz (En↓ − (J/2)Sz)n↓ + (J/2)S−σ +

(En↑ + (J/2)Sz)(En↓ − (J/2)Sz) − (J 2/4)(1 − (Sz)2)

〉
(43a)

T +
↑ (λ, iωn) =

〈
eλSz (J/2)((Sz)2 − 1)n↑ − (En↓ − (J/2)Sz)S−σ +

(En↑ + (J/2)Sz)(En↓ − (J/2)Sz) − (J 2/4)(1 − (Sz)2)

〉
. (43b)

It may be seen that the DMFT and CPA expressions forS+
σ agree, butT +

↑ (λ)|DMFT = T +
↓ (λ)|CPA.

This discrepancy, due to failure of the decoupling approximations made in the equation of
motion forT α

σ [9], vanishes in the important limitJ → ∞ of strong coupling where allα = +
Green functions are zero.

5. The Curie temperature

Furukawa [14] finds that theS = J = D = ∞ DE model exhibits a transition to ferro-
magnetism, and in section 4 it was shown that our CPA gives exact expressions for the
Green-function equations in this limit. However, in section 3 we showed that there is
no magnetic transition in our CPA (figure 1) and found unphysical behaviour atn = 1
(figure 2). In this section we resolve this apparent discrepancy and postulate a modification
of our CPA that restores magnetic behaviour. We again work in the elliptic DOS case where
Enσ = iωn − (W 2/4)Gσ (iωn).

We first derive theS = J = ∞ DMFT static susceptibilityχ . In this case

P(S) =
(

exp(βhSz)
∏
n

[(1 +Sz)En↑ + (1 − Sz)En↓]

)

×
(∫

d2S exp(βhSz)
∏
n

[(1 +Sz)En↑ + (1 − Sz)En↓]

)−1

(44)

as was shown in the previous section. The first-order deviationδP (S) of P(S) from its
zero-field paramagnetic state value (1/4π ) is given by

δP (S) =
(

βh +
∑

n

δEn

En

)
Sz

4π
(45)

whereEn is the zero-field paramagnetic state value andδEn is the first-order deviation ofEn↑.
From (28) we have in the present case, whereW̄ = W/

√
2,

δGnσ = σEn δ〈Sz〉
2E2

n − W 2/12
. (46)

Substituting (46) into (45) usingδEnσ = −(W 2/4)δGnσ , then multiplying bySz and
integrating over the local spin orientation, we obtain

χ = gµB δ〈Sz〉
B

= (gµB)2(β/3)
/(

1 + (W 2/12)
∑

n

(2E2
n − W 2/12)−1

)
(47)

upon rearrangement. This gives the correct Curie lawχ = (1/3)(gµB)2β atn = 0 andn = 1
and a transition to ferromagnetism for alln at a temperature

kBT = −(W 2/12)I[(2E2 − W 2/12)−1]
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whereE(ε) = ε − (W 2/4)G(ε) [14].
We now consider where the CPA calculation ofχ has gone wrong and how to improve it.

The CPA equations for the Green functions are exact in the present case (S = J = ∞), but
to solve them we need expressions for the expectations〈exp(λSz)nσ 〉, 〈exp(λSz)S−σ σ σ 〉, and
〈exp(λSz)〉, as mentioned in section 2. Since the first two of these are obtained using theI
sum rule, a procedure that is exact, the problem must lie with the determination of〈exp(λSz)〉.
Note that the way that we have calculated〈exp(λSz)〉 only works forS finite, and to calculate
it at S = ∞ we have worked for finiteS and taken the limit at the end.

Now knowledge of〈exp(λSz)〉 is equivalent to knowledge ofP(S), so a possible way of
improving the CPA expression forχ is to abandon the above self-consistent determination of
〈exp(λSz)〉 and instead to use some expression forP(S) that reduces to theS = ∞ DMFT
result (44) in the classical spin limit. We have so far been unable to derive such an expression,
so we instead postulate a natural extrapolation of (44) to finiteS, justifying our formula by the
resulting behaviour ofχ . This procedure will at least force the CPA forχ to become exact in
theS → ∞ limit, and theS = ∞ magnetic transition is likely to persist to finiteS.

From theS → ∞ limit of (19a) and (19b) it may be seen that the quantity in square
brackets in (44) is related to the denominators of the Green-function equations (forS = ∞).
A natural extension of (44) is thus

P(S) =
(

exp(βhηSz)
∏
n

[(1/2 +S + Sz)En↑ + (1/2 +S − Sz)En↓]

)

×
(

2π
∑
Sz

exp(βhηSz)
∏
n

[(1/2 +S + Sz)En↑ + (1/2 +S − Sz)En↓]

)−1

(48)

whereη is chosen so as to optimize the behaviour ofχ . The explicit energy shifts associated
with the fieldh in E↑ andE↓ are ambiguous and have been neglected. However, some effect
of h on the double exchange enters through the Green functions and the factorη allows for the
conduction electron contribution to the spin in the Zeeman energy. Then proceeding as above
we can calculate

χ = (gµB)2 (1/3)ηβS(S + 1) − βsI[G′/E] + (1/2)I[G′]
1 − Q/(2S + 1) + 2βsR

(49)

wheres = (W 2/12)S(S + 1)/(2S + 1), Q is as in (29b), and

R = I
[

1

(2S + 1)E2 − ((2/3)S + 1)W̄ 2/4

]
. (50)

It is then easy to see that if we takeη = 1 + (n/2)/(S + 1) then the correct Curie laws
χ = (gµB)2βS(S + 1)/3 andχ = (gµB)2β(S + 1/2)(S + 3/2)/3 are obtained atn = 0 and
n = 1 respectively. Note thatSη = S + n/2 + O(1/S), so if we regard our extrapolation from
S = ∞ as a kind of 1/S expansion this is a very natural value—it corresponds to the average
spin size in the system to leading order. With this form (49) forχ we also obtain a magnetic
transition for allS at a temperature determined by

kBT = 2sR

Q/(2S + 1) − 1
. (51)

The Curie temperature is plotted against fillingn for variousS in figure 4 (top figure) below.
It agrees with Furukawa’s result in his case ofS = ∞. Clearly for finite-S ferromagnetism
is more stable forn > 1/2 than forn < 1/2, in agreement with the findings of Brunton
and Edwards [18]. We have also calculatedTC via the spin-wave dispersion in the (assumed)
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Figure 4. The Curie temperaturekBTC/W calculated using the elliptic bare DOS plotted against
filling n for variousS (top figure), and the effect onTC for S = 1/2 of changing the bare DOS to
the 3D cubic DOS (bottom figure).

saturated ferromagnetic ground state, using a method similar to that of Sakurai [19, 20] for
the Hubbard model. The Curie temperature obtained is similar in magnitude toTC in figure 4
and decreases with increasingS, as is the case here forn near 1. This work will be published
elsewhere.

Brunton and Edwards found that the stability of the spin-saturated state atT = 0 is strongly
dependent on the bare DOS used: approximating the true cubic tight-binding DOS with the
elliptic DOS qualitatively changed the form of their spin-flip excitation gap. Accordingly we
check the effect onTC of using the true tight-binding DOS. The bare elliptic and cubic tight-
binding DOSs and the corresponding full (zero-field paramagnetic state,S = 1, n = 1/2, and
J = ∞) CPA DOSs are shown for comparison in figure 5 below. Now it is straightforward to
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Figure 5. Bare (top figure) and full CPA (bottom figure, for theS = 1, n = 1/2, J = ∞, W = 1
zero-field paramagnetic state) DOSs.

extend the derivation of theTC equation to the case of a general DOS; the only effect on (51)
is to replaceW 2/4 with (W̄/(WG))2 + 1/G′ inside theI-functionals. Hence for general DOS

kBTC = 2

3

S(S + 1)

2S + 1

R̃

Q̃/(2S + 1) − 1
(52)

where

R̃ = I
[

(W̄/(WG))2 + 1/G′

(2S + 1)E2 − ((2/3)S + 1)(W̄ 2/W 2)((W̄/(WG))2 + 1/G′)

]
(53a)

Q̃ = I
[

E

E2 − ν2(W̄ 2/W 2)((W̄/(WG))2 + 1/G′)

]
. (53b)

Note that for the elliptic DOS case(W̄/(WG))2 + 1/G′ = W 2/4. We plotTC obtained from
(52) in the most sensitive case ofS = 1/2 in figure 4 (bottom figure) for the elliptic and cubic
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DOSs. It may be seen that changing the form of the bare DOS does not have a large effect on
TC. The dip inTC nearn = 0.3 for the cubic DOS is interesting since near this filling Brunton
and Edwards [18] found an instability of the saturated ferromagnetic state forS = 1/2.

6. Summary and outlook

In this paper we have extended our many-body CPA treatment [9] of the DE model to the
case of generalS and magnetization. In our original approach we were faced with 4S + 1
algebraic equations to solve for the Green functions in the case of non-zero magnetization. A
correspondingly large number of correlation functions had to be determined self-consistently.
Consequently in [9] we only consideredS = 1/2 for the magnetized state and subsequently [15]
calculated the paramagnetic susceptibility in this case. The generalization to arbitraryS in
section 2 of this paper is achieved by introducing generating Green functions involving a
parameterλ. The 4S + 1 coupled algebraic equations are then replaced by a single first-
order linear differential equation inλ whose solution yields the CPA equations for the Green
functions. Only three correlation functions have to be determined, as functions ofλ, and two
of these may be obtained directly from the Green functions. The indirect determination of
the third〈exp(λSz)〉, from the approximate EOM for the Green functions, is less reliable. It
seems to be the origin of difficulties in section 3, where the paramagnetic susceptibility is
calculated forJ = ∞. No ferromagnetic transition is found for anyn or S and forn = 1
the correct Curie law, with spinS + 1/2, is found only at high temperature. On the other
hand in section 4 it is shown that forS = ∞, where dynamical mean-field theory has been
implemented [14], our CPA equations for the Green functions agree with DMFT. Furthermore,
DMFT leads to a ferromagnetic transition for 0< n < 1 and to a correct Curie law forn = 1.
In section 5 this paradox is resolved by abandoning the apparently unreliable self-consistent
determination of〈exp(λSz)〉 and using instead a probability distributionP(Sz) to evaluate the
required expectation values. The form ofP(Sz) used for finiteS is a reasonable extension of
the form which arises in DMFT forS = ∞. We then find a finite Curie temperatureTC for
0 < n < 1, and correct Curie laws forn = 0 and 1, for allS. Naturally the results agree with
DMFT for S = ∞. The maximum inTC, as a function of band fillingn, moves fromn = 0.5
for S = ∞ to larger values ofn asS decreases.

This work completes our present study of the paramagnetic state and ferromagnetic
transition of the DE model within our many-body CPA. With some effort we could pursue
the calculations into the ferromagnetic state. However, this has already been done forS = ∞
within DMFT [14] and the rewards might be slight, particularly since for finiteS the CPA
never gives a ground state of complete spin alignment. It seems more profitable to repair
some defects of the DE model itself. One should include both coupling to phonons and the
double degeneracy of the eg band. It is likely, as originally proposed by Milliset al [4], that
phonon coupling is essential for an understanding of the insulator-like paramagnetic state in
the manganites. We showed [9] that, without phonons, the DE model gives much too small a
resistivity. The introduction of phonons is therefore a high priority and it is in fact easier to
include coupling to local phonons in our CPA approach than to consider degenerate orbitals.
This is our next objective.
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Note added in proof. We note that a similar use of the generating function form exp(λSz) was made by Callen in a
Green-function decoupling scheme for the Heisenberg model [21].
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