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Abstract. Previously a many-body coherent potential approximation (CPA) was used to study
the double-exchange (DE) model with quantum local sginsoth forS = 1/2 and for genera$

in the paramagnetic state. This approximation, exact in the atomic limit, was considered to be a
many-body extension of Kubo’s one-electron dynamical CPA for the DE model. We now extend our
CPA treatment to the case of geneSaind spin polarization. We show that Kubo’s one-electron
CPA is always recovered in the empty-band limit and that our CPA is equivalent to dynamical
mean-field theory in the classical spin limit. We then solve our CPA equations self-consistently
to obtain the static magnetic susceptibiljyin the strong-coupling limit. As in the case of the
CPA for the Hubbard model, we find unphysical behaviouy iat half-filing and no magnetic
transition for any finiteS. We identify the reason for this failure of our approximation and propose

a modification which gives the correct Curie-law behaviouy @t half-filling and a transition to
ferromagnetism for alf.

1. Introduction

Recently there has been much interest in the perovskite manganite compqupdsMnO;

where T and D are trivalent and divalent cations respectively. These exhibit a rich variety
of phases including charge, orbital, ferromagnetic and antiferromagnetic ordering [1, 2].
Of particular interest is La ,Ca,MnO3z with x ~ 0.3; in this compound ferromagnetic—
paramagnetic and metal-insulator transitions occur together, and for temperatures near the
critical temperature an applied magnetic field causes a very large reduction in electrical
resistance: this is the phenomenon known as colossal magnetoresistance (CMR).

The physically relevant electrons in the manganites are those from the Mn 3d levels, which
are split by the approximately cubic crystal field into triply degenergtievels and higher-
energy doubly degeneratglevels. Occupiedgevels are further splitinto two non-degenerate
levels by the Jahn—Teller effect. Electrons from théegels are able to hop between Mn sites
via the O atoms, forming a narrow conduction band, but those fromdlevels are localized.
Thereis a strong Hund’s-rule coupling on the Mn sites, soff@éctrons are usually modelled
as localS = 3/2 spins ferromagnetically coupled to the itineragietectrons. Atc = 0 there
is one g electron per site so the system is a Mott insulator. Doping by D atoms produces holes
in the g band which enables conduction to occur.

The simplest model for the CMR compounds, which neglects jliegeneracy and any
coupling to phonon modes, is Zener’s [3] double-exchange (DE) model

H:Ztijclrcjo_JZSi‘O'i_hZLf (1)
Ljo 1 1
wherei and j are Mn sitesc;, (cl.t,) is ao-spin conduction electron annihilation (creation)
operator,S; is a local spin operatog; is a conduction electron spin operatdf, = S;7 + o/
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is thez-component of the total angular momentum on a sjtds the hopping integral with
discrete Fourier transform, J > 0 is the Hund’s-rule coupling constant, ahd= gugB is

the Zeeman coupling strengtB,being the applied magnetic field. The number of conduction
electrons per atom is assumed to be given by = 1 — x. The idea of the DE model is

that hopping of gelectrons between neighbouring sites is easier if the local spins on the sites
are parallel, so an effective ferromagnetic coupling between the local spins is induced by the
conduction electrons lowering their kinetic energy. Double-exchange coupling differs from
conventional Heisenberg coupling by being (for classical local spins) of the for(®; ¢

rather than ca®;;), whereg;; is the angle between thieand j-site local spins.

According to Milliset al[4,5] the CMR effect arises from a competition between double-
exchange coupling, which produces a tendency towards the conducting ferromagnetic state,
and strong coupling to phonon modes, which tends to localize the electrons via self-trapping.
In a previous paper [9] we confirmed that the DE model above cannot account for the very high
resistivity of the paramagnetic state. Moreover experiments show that coupling to the crystal
lattice is important [6—8]. In this paper however we will complete our study of the simple DE
model, aiming to understand the purely electronic properties of CMR systems modelled by
(1) before tackling more realistic and complicated models. We concentrate particularly on the
magnetic properties.

In [9] we derived an approximation for the one-electron Green function which was based
on Hubbard’s scattering correction approximation for the Hubbard model [10]. In the Hubbard
model this approximation is derived by decoupling the Green-function equations of motion
according to an alloy analogy in which electrons of one spin are frozen whilst the Green
function for those of the opposite spin is calculated. For the fifiiie model this approach is
complicated by the possibility of dynamic spin scattering—conduction electrons exchanging
angular momentum with the local electrons. We obtained an approximation which, like
Hubbard'’s, was exact in the atomic limit for all band filling. Since Hubbard’s approximation is
equivalent to the coherent potential approximation (CPA) in the alloy analogy for the Hubbard
model, and our approximation reduces to a one-electron dynamical CPA due to Kubo [11] in
the empty-band limit of the DE model, we regard our approximation as a many-body extension
of the CPA.

In [9] we concentrated on simple cases in which the CPA system of equations of motion
closed easily, and calculated the electronic structure and resistivity of the paramagnetic state.
In section 2 we formulate and solve the general CPA equations. In section 3 we then calculate
the static magnetic susceptibility self-consistently within the CPA. In section 4 we compare
our CPA in the classical spin limit with dynamical mean-field theory, and in section 5 the CPA
is modified so as to improve the behaviour of the susceptibility. A summary and outlook are
given in section 6.

2. Solution of the CPA equations

In this section we will use equation of motion (EOM) decoupling approximations to derive
an expression for the one-electron Green functigth = ((cjs; cj.(,)) of the DE model.

In a previous paper [9] we obtaine@. in the special cases of zero-field paramagnetism
and saturated ferromagnetism for all valuesSpbut only considered the case of arbitrary
magnetization fol§ = 1/2. Here we extend this previous treatment to the case of gesieral

and spin polarization. The decoupling approximations used are direct extensions of those used
in [9], which were inturn generalizations of Hubbard’s scattering correction approximation [10]
for the Hubbard model.
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We split the Green functions into component$ = G + G/~ whereGY* describes
ijo

propagation via singlyo( = —) and doubly ¢ = +) occupied sitesGs~ = ((n{ciq; c}(,))
wheren] = n;, n; = 1—n;, n{, = n;, andn;, = 1—n,;,. Heren;, = c;rac,-(7 and
n; = n;; +n;,. Now the cases considered in [9] were chosen so that the system of EOMs
could be closed using only the Green functiah&', ((Sn%cio: c1,)), and((S; “néci—q: cly))
whereS;” = S andS; foro = 1, | respectively; here we will also need the Green functions
({(SH"nf i c}a)) and(((SH)" 1877 n%c;_o; cj.g)) form > 1in order to close the system. It
is simplest to work with the Green functions

SU(0) = <<e’\5‘;n?‘cm; C;U>> (2a)

Tie(3) = <<eks; ST Nt ch>) (2b)
which are in generating function form so that

8™ SH* [9A™ 5m0 = (((SH)"nfciq: Cly))
and

"I [oa" ;o = (S LS ey cly)).

For notational simplicity we will work foro = 71, theo = | EOM can be obtained by
making the replacements, — c¢;—,, el SF = —SF, Si + S*, h +— —h, and

io i—o?

A — —A. Recall that with the fermionic definition of Green functlons

((A; C))e = —i foo dr explier)({A(r), C})
0
the EOM is
€{(A; C))e = ({A, C}H) + ({[A, H]; C)), 3

We use the fact thaf;* (1) and7.* (A) are in generating function form to write their exact
EOMs in the form

h J 8 ijct J 5a+ ijoz
<e+§+§a)S¢ (x,e)+—eA /(% €)

RS SO TN Y TP LY S

for 5% (%, ) and
hoJ B] e J s 9 32\ oije
<6+§_§<8a+ﬁ>>TT ()\,,E)"‘Ee S(S+1)+aﬁ—w ST ()L,G)
e LA B DY (CRR AN
ady; { o) ; k i it €y Cir )

L o—[,a o F
+ <<e*51 Si [nfy. Ho] iy cj?)>€ (5)
for T{j“()\, €). Here
Ho =) tijclycjo
ijo
is the kinetic part of the Hamiltonian and we have dropped the site indices in the

expectations, assuming the system to be in a homogeneous phase (i.e. we will not
consider antiferromagnetism). If one works directly with EOMs for the Green functions
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(S n%ciq: L)) and(((SH™ 187 nle;y: cl,)), asin [9], one is faced with$+ 1 algebraic
equations for generd. Here, using the generating functions, these algebraic equations are
reduced to just two differential equations where differentiation with respecttresponds

to the coupling between the different algebraic equations.

These EOMs form a closed system apart from the undetermined Green functions on the
right-hand sides which correspond to the effects of hopping. The decoupling procedure entails
making approximations for these kinetic terms which close the system of equations; since these
terms are proportional tothis procedure is exact in the atomic limit— 0. As mentioned in
the introduction the idea of the alloy analogy is to neglect the effects of the kinetiélpait
the Hamiltonian on electrons of one spin whilst considering the propagation of an electron of
the opposite spin. Accordingly we neglect the final terms of (4) and (5) since the occupation
number operators in these Green functions are considered to be frozen in time. It remains to
find closed approximations for

Z lik ((€XP(AS)INT cks C}¢>>e
3

and

Dt (eXpASH ST iy €ly)e
k

The derivation of scattering correction approximations for these terms is identical to that of [9]
apart from the occurrence of the factor €xf§7) and will not be repeated here. In fact we use

e,
~ (@) Do), + A (@t (e nipeniel)) @
k

= (&ng) <Z Gy (e) — JT(e)G?(e)) + 11 (€)S{ (1. €) (6b)
k

Yo (st
N —a (e’\SZS*UJr) Z l;kG];j (€)+J (e +h) «e/\sf Si niyeis C;T»
P €
+ J;(€) <<a (€% S 0% e C}LT>>E (6c)
= —a(es70") (Z kG (e) — JT(e)G;f(e)> + (e + T (1, €)  (6d)
k

where J,(¢€) = € — Z,(¢) — G,(e)~1. Here =, (¢) is the self-energy, local within this
approximation, and3, (¢) = G'/(e) is the local component of the Green functiod, ()
contains the effects of coherent propagation of the electroncasgn from sitei back to
sitei via paths avoiding the site at intermediate stages [12]. Note thatfifgpin electron of
energye becomes g -spin by exchanging angular momentum with a local spin it must then
propagate at energy+ h—hence the occurrence gf (e + ) in (6¢) and (@) above. It may be
seen that approximationsgpand (&) close the system of equations (4) and (5). No further
approximations are made.

For convenience we now defire, (¢) = € — J, (¢), which will later be related to the
Weiss function of dynamical mean-field theory [13} (¢) = E, (€ + hd,,) + oh/2, which
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puts the energy shift effects of the magnetic field iBtg and

2€) =8+ 1uGY(e) — Jo ()G (e). 7
k
We make the above approximations so that (4) and (5) become
0
E’;(e) +(J/2) 7 (J/2)eMde S%joz()\y o
(J/2)e e | S(S+1) +a 2 — L E'e) — (J72)( 8, + 2 /(€
dr 92 v A
Y (e”zni)
~ )\'T (6) (_a(e}\SZS—O.+> . (8)

This is a coupled pair of linear differential equations (with respect)tof first and second
order respectively. The first equation is used to elimifdté(x, ¢) in terms of S/ (1, €):

ijo 2 — ij T« ijo J 90 ijo
T0n &) = Ze7 G () (¢ nf) - E}©S!"0, €) = 5 8“0, €)). )

Substituting into the second equation we obtain a first-order equaticﬂj"’f’cm, €):

- J/2)S(S+1) — E(e)((2/J)E" -
iS’TJ“(/\,eH(( /2)S(S + )h T(G)(h(/ ) ¢(€)+0l)>s,¢,a(k’€)
ar E¢(€) - Ei(é)
2/NE"(e) +a — §9)€5'n% + aeCe*SI g+
_ (2/NE|(e) +« : ) f:i o o 2 o). (10)
Ell(e) — E'l(e)
This equation is of the form
B 4 psey = RO (12)
whereP is independent af, which has the solution
A
S\ =ce P +e f dx e"*R(1) (12)

whereC is a constant of integration. Furthermore, by inserting local spin projection operators
into definition (22) of S’T""(A, €) it may be seen that

S
S, €) = Z ayre (€) eXpma)
m=—=S5
Whereaf,{ﬁ(e) is independent of. Since in generaP is not an integer we must hae = 0.
Hence we find
(E(€) + (J/2)(a — $)ES NS — ((J/2)8, )5 S70*

(Ef(e) + ST /2)(E|(€) + (J/2)(a — §7)) — (J2/A)(S +aSH)(S + 1 — a57)

S;ja()"v 6) = <

N ((J/2)8)€ DS 0™ >
(Ef(€) + (J/2)(S* + D)(E](€) — J§7/2) — (J2/A)(S — S3)(S + 1 +57)

x AT’ (€) (13)
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where we adopt the convention that a quotient of opera®mivided by A, meansA~1B.
Substituting into (9) we also obtain

&5 ) ((J/2)(S7 +aS) (ST — (S + D)nt + 8, (El(€) + JS/2)S ™)
(El(©) + IS /2)(El (@) + (J/2)(a — ) — (J2/4)(S +aS7)(S + L — aS7)

TTija()‘" 6) = <

S+ (Ef(€) + (J /(1 +59))€¥ S 0"
T (El©) + (J/2)L+S))(El(e) — JS7/2) — (J2/4)(S — $5)(S +1 +Sz)>

x 25 (e). (14)

It is easy to check that these expressions reduce to those obtained in [9] in the appropriate
cases.

We are mostly interested in the local components of the Green funcﬂ@ns,s?“ and
Ty = TT""“, and in the following we drop site indices. Note thdte) = 1; this follows from
the relation\d () = G4 (¢)/ G, (¢) which is easy to obtain from the definition (7) &f (¢)
using Fourier transforms and the localityDf (¢), as in section A of [9].

SinceE" is a functional ofG,, equation (13) with = j determinesG,, in principle,
in terms of the expectationgxp(rS?)), (exp(AS)n, ), and(exp(rS?)SFo*) as functions of
L. These expectations must be evaluated self-consistently in terf§gofand 72 (1). The
equation forG, simplifies if we approximate the physical (simple cubic tight-binding) bare
density of states (DOS) by an elliptic DOB{¢) = 2/ W2 — €2/(w W) whereW is the half-
bandwidth; for this DOS it may be shown thBf (¢) = € — (W?/4)G, (¢), SOE, is an explicit
function of G,. We now define the functional

d
Ile] = yﬁy o S~ wg(©) (15)

wheref is the Fermi functiony is the chemical potential, andis the anticlockwise contour
lying just below and just above the real axis. This functional is useful owing to the usual sum
rule

Z[((A; C))] = (CA) (16)
from which it follows (exactly) that

Z[s2n] = (¥ n” n,) (17a)
I[TE W] = (g% 5707)8a-. (170)

The expectationgexp(rS¥)n, ) and(exp(rS?)SFTo*) can therefore be obtained directly from
the sum rule agexp(AS%)n,) = Z[S, (1)], whereS, (1) = Y, S (1), and(exp(rS*) S~ o ™) =
I[T; (V)]. However(exp(AS?)) must be obtained indirectly, in principle, by solving the system
of equations obtained by applying the€functional to (13) and (14). Knowledge (#xp(15%))
is equivalent to knowledge df(5?), the probability distribution function for local spins, and it
is not clear that this quantity will be accurately obtained from the (approximate) single-electron
Green functions that we have considered here. In fact, as will be seen later, the self-consistent
determination of this quantity causes problems with our CPA.

We now specialize to three important cases of particular interest: 0, J = oo, and
S = oo, in which (13) and (14) simplify considerably. The results below generalize previous
work [9] which was restricted, for general magnetization, to the Sasel/2.
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2.1. The empty-band limit

In [11] Kubo used a one-electron dynamical CPA to derive an expressigiyfealid in the
low-density limitn — 0. From (13) withx. = 0 we calculate5; in this limit as

_ El — (J/D(1+5)
"\ E+(1/2)S)(E] — (1/2(A+57) — (J/4)(S+1+S)(S — 5 |

This is equivalent to Kubo’s equation f@¥, so our decoupling approximation is indeed a
many-body extension of the CPA.

(18)

2.2. The strong-coupling limit

In the physical systems for which the double-exchange model was introdiicedy;; and

0 < n < 1. In this situation the chemical potential lies in the lowest band re&$/2, so
we shift the energy origing” +— E" — J§/2, and let/ — co. Equations (13) and (14) then
become

. (S+1+SHYn  +S 0"
o _ §2 J
St = <eA (S+1+SHE!+(S — SZ)Ei’> “ (1%)
. (§+1+SHn; +S o
o _ Strq Q2 J
T _<eA (-5 )(S+1+SZ)E’;+(S—SZ)E’5> o (1%0)

2.3. The classical spin limit

In dynamical mean-field theory (DMFT), a local approximation exact in the infinite-
dimensional limit [13], the double-exchange model can be solved exactly in the classical spin
limit S — oo in which the local spins can be treated as static [14]. Since our approximation
is also local it is interesting to compare our results with DMFT in this limit. WeSled oo

in (13) and (14), scalind, A, , andT¢ (1) as /S, and obtain

Se(h) = (&5 (Ey — (J/Z)Sz)n‘i +a(J/2)S o
e (E+ +(J/2)SH)(Ey — (J/2)87) — (J?/B) (1 — (59)?)

> (202)

(J/2)((8%)? — Dng —a(Ey +(J/2)59)S7 0"
(Ey + (J/SHE, — (J/2)S?) — (J2/H(L1 - (592
where byS* andS~ we meanS?/S andS~/S respectively. Note that in this lim” = E,.

In section 4 below we will derive these Green functions within DMFT for comparison, and it
will be found that our CPA agrees with DMFT f&f and7,, but not for7~.

T (h) = <e”‘" > (200)

3. Self-consistent CPA susceptibility

In this section we calculate the static magnetic susceptibyilivf the zero-field paramagnetic
state. For simplicity we specialize to the strong-coupling lithi= oo most favourable to
ferromagnetism and use the elliptic bare DOS mentioned in the previous section. We drop
the spin suffices on zero-field paramagnetic state quantities and édaftoebe the first-order
deviation of any quantity from its value in this state. ThusA is proportional to the applied
magnetic fieldB or equivalently toS(L?) = §(S* + o%). We proceed by calculatingfL?) in

terms of the Zeeman energy= gug B and using

X = (gne)” lim (8(L%)/ ).
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We first derive a couple of useful identities. Equationsajland (1%) imply that
T,(A) = (S — 9/01)S,(1). We apply the sum rule (16)—(hyto this relation and, using
the fact that all the self-consistently determined expectations are real, obtain the rather obvious
results

(€%8-0)=(5/2)(e%n) (21a)
($7n) =28 (07). (21b)
These serve as a check on our approximation and will later be used to manipulate expectations.

The Green functions are especially simple in thie<{ co) zero-field paramagnetic state:
from (19a) with A = 0 anda = — we have

+1-n/2)/(2S+1
Gle) = (S n/2)/(2S +1) 22)
E(e)
which corresponds to a band of weidist+ 1 — n/2)/(2S + 1) per spin. In the elliptic DOS
case, for whichE (¢) = € — (W?/4)G(€), we can easily solve this equation to obtain

2 (e—\/ez—WZ) (23)

w2

G(e) =

where

W= W\/(S +1-n/2)/(25+1)
is the halfwidth of the renormalized band, which is also elliptic.
We expand the denominator of @3dn powers ofS?:
(E}—E) &

S () =
1 ; (S +DE] + SEN™T oar

<e’\51 ((s F1+Sn] + svﬁ)) : (24)

Owing to the presence of the factEfj — E", which is zero in thé: = 0 paramagnetic state,
only ther = 0 andr = 1 terms contribute t6S;(1). From (24) we find
SE(/0n — S) —SEN9/0r+ S +1)
(2§ + 1)2E2
3(&F(S+1+8n] +S70"))
+
(2S+1)E

where the paramagnetic state value, which may easily be evaluated, is used for the first
expectation. Now it may be shown thgt = 0, soSZ[A] = Z[5A] for any A. We calc-

ulate Z[(3/91)(S4 (L) + S (A))]a=o from (25), and using (2d) and (2Db) and the sum rule
(17a) find

8(S*(ny +ny)) = 258 (07)

88y () = (5 (S+1+85n; +570™)

(25)

(s + D(LY) — @5+ s 07))

T S+1-n/2
— SE" —2(S+1)SE"
+2S(s+1 n/2)Z =& ) SEY . (26)
3(2S +1)2 E?

SinceE! (e) = € +h/2 — (W?/4)G, (€ + hd, ) we have
SE! =hj2 — (W?/&)(8Gy +h8,,G') (27)
whereG’(¢) = dG(e¢)/de. By settingsr = 0 in (25) and using (24), (21b), and (27), we
obtain
S(L*YE + h(W/W)2(SW2G'/6 — (S +1/2))
(25 +1)E2 — ((2/3)S + h)W2/4 '

G, =0 (28)
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Note that sincG, « o, spectral weight is transferred between the different spin bands at
constant energy, séy. = 0 as mentioned above. Equation (28) illustrates lW¢iF), and
hences(S?), is determined indirectly in terms of the Green functions rather than by a direct
sum rule of the type of (18 and (1'b).

We use (27) and (28) to eliminate the” s from (26) in terms of and§(L?). By applying
7 to (28) we obtain an expression & *). We then eliminaté (c*) between this equation
and (26) and solve the resulting equation o= (gug)?8(L?)/h:

(3118)’ 716]
= =5 (W3S + D+ (@35 + 1) 7 (2%)
E
07| g &)

wherev? = ((2/3)S + 1)/(2S + 1). Note that forS = 1/2 this expression fox does reduce
to the one given (for thé = 1/2 case) in [15]. We can simplif@ by changing variables to
7z = W?G(e)/(2W) so that

de = @QW/ WG (e) 1 dz = (W/2)(L — @QW/W?)2G(e) D) dz = (W/2)(1—z7?) dz

and from the functional form (23) a it may be seen that the contouifor e becomes-y’,
the clockwise unit circle, fog. Hence

dz -(z+z7! _\z-zt
Q_fé/,z_nif< 2 _M>Z2—v2 (30)
whereji = /W andf () = f(We). The same change of variables can be used to show that
) 2W [ dz - fz+z7Y
I[G]__Wf,,ﬁf< 5 —,U«>~ (31)

Now a second-order transition to ferromagnetism corresponds to a divergenge in
i.,e. 0 = 1. From (28) withz = 0 and (29) it may be seen, using the sum rule, that
8(L*)Q/(25+1) = I[8G] = é(c*) (forh = 0). The equatio® = 1 for a zero-field magnetic
transition is therefore equivalent to the consistency conditign 2 = §(S* + o) /(S + 1/2),
which certainly holds at = 1 but not at» = 0. Integral (30) can be evaluated analytically in
the limits of zero and infinite temperature where the Fermi function is of a simple form and
the results are plotted in figure 1. Itis clear that within the CPA there is no magnetic transition
for 0 < n < 1, as is the case for the CPA for the Hubbard model [16]. This appears to
be a considerable drawback of our approximation given that the ferromagnetic—paramagnetic
phase transition is a major reason for interest in the double-exchange model. We will propose
a method for circumventing this problem in section 5.

We now consider the behaviour gfatn = 0, 1. In these cases electron hopping does
not occur and the system consists of a lattice of free local moments of magsited& and
S + 1/2 respectively, so we expegtto take the Curie-law formyc = (gug)?8S5’ (S’ +1)/3
wherep = (kgT)~! is the inverse temperature. We calculatén these cases by expanding
the integrals in (30) and (31) in powerswobr 1 —n. Atn = 0we findy = xcwith 8’ = §
as expected, but at= 1 we findy = xc¢ (with §" = § + 1/2) where

¢ = (f dz exp<B<z+z—1>/2)> / (f dz expB(z+z N/ -z H/(% - v2>) (32)
y' y'

andB = WB. Now¢ — 1 asp — 0 so the Curie law is obtained at high temperature, but as
B — oo we find¢ — 852/(3(2S + 1)(4S + 3)) # 1 so Curie-law behaviour does not extend
over the whole temperature range. Note thg§8 = co) # 1 even atS = oo where, as will be
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shown in the next section, our Green-function equations reduce to DMFT. The reasons for this
unphysical behaviour, and a way to avoid it, are discussed in section 5. In figure 2 below we
comparey atn = 1 andS = oo with xc and the low-temperature asymptote/3. In figure 3

we ploty ! atS = oo andn = 0.75, comparing it with the Curie-law and DMFT values, the
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Figure 1. The Q-function versus filling: at temperatur§ = 0 and7 = oo.

DMFT plot only being displayed for the paramagnetic phase.
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Figure 2. TheS = J = oo magnetic susceptibility for n = 1 compared with its low-temperature
asymptote and the Curie law.
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Figure 3. The S = J = o inverse magnetic susceptibiligy1 for n = 0.75 compared with the
Curie-law and DMFT values.

4. Comparison with dynamical mean-field theory atS = oco

In this section we will obtain equations for tl5¢ and7* Green functions within dynamical
mean-field theory (DMFT) af = oo and compare them with equations &@&nd (2®) of
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the CPA. The DMFT single-site effective actidrof the DE model is [14]
B rB B
S = / / dr dr’ ch(t)Eg(r — ey (7)) — 1/ dr I:SZ(‘L') [n1 (1) —ny(0)]
o Jo ~ 2 Jo
B
+ S*(t)o (1) + S_(r)a+(r)] —h / dr [SZ(r) + aZ(r)]
0

B
+i / dr S°7 . tan‘l(Sy(t)/S"(r)) (33)
0

where E, describes the self-consistently determined coupling with the conduction electron
bath. Herecf,(r) andc, (t) are Grassmann variables [17]. Now DMFT for the DE model
is exactly solvable in the classical spin linfit— oo where S(r) becomes-independent

(we scaleJ andh as 1/S), since forS constants is diagonal in the Matsubara frequency
representation:

S=-Y(c ) [ B +(J/25° (J/DS" } (C”T> — BhS* (34a)

(J/2S*  En —(J/2)8° [\cny
= > (el o)A, <§T> — BhS* =5, — BhS: (34b)
n Vl‘L n

defining the matrix4,, and the components;, of S. Here

B
E.. = —/ dr expliw,7)Ey(T)
0

andw, is a fermionic Matsubara frequency. Note that as shown in [13] the self-consistency
condition for E,, can be written as,, = X (iw,) + G(iw,) ™%, S0 E,, is just our quantity
EO‘ (ia)ﬂ)' o

In terms ofS the partition functiorZ is given by

zZ= / d2s / (]‘[ def dcm,)es = / ds e [ / (]‘[ det dc,m)es" (35)

where/ d2S is the integral over the local spin direction. All site-diagonal correlation functions
can be calculated explicitly in terms of tli&,, s, for example the one-electron Green function
is given by

<<ci¢; C;TT» =— <chc:;¢> = —% / d?s (H de! dcm(,>e§chcIT. (36)

lw,
" mo

It is convenient to work with the generating function

Z, = /(1_[ dc;[(, dcm) eXp(—S’n + Z(nl(,cm, + CI(, Nno)) (37a)
- det(An)eXp[(nIT ) ALY (ZI)] (37h)

In terms ofZ,, the partition function

Z= /dZS exp(,BhSZ)<l_[ z,l>
and the local spin probability distribution function

P(S)=2z"1 exp(,BhSZ)<l_[ zn)

= / d?s exp(ﬁhSZ)]—[det(An)

n'=n'=0

n'=n"=0
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Note that
wesy = [ s Ps)us)
foranyU.
Explicitly, our full Green functions are given i§i = co DMFT by
1 : d?
Si(h, iwy) = = / d?s e“*ﬂ’”s‘(— Z,,r) (38a)
f z anT dnur H n'=n=0
Ty (A, iw,) = 1 f d?s e*+pmsT g= (d—2 ]_[ Z ) (38b)
z dnl¢ Ay~ n'=nT=0
and these expressions are easily evaluated to give
. E,, —(J/2)§°
Si(h, i) = <e” L > 3%
! (Eny +(J/2)S?)(Eny — (J/2)87) — (J2/8)(1 - (57)?) (3%)
. J : 1— (592
Ty (A == (& )
1 lon) 2 <ej\ (Ent +(J/2)S*)(Eny — (J/2)S7) — (J2/4)(1 — (Sz)z)> (3%)

Summing theS = oo CPA expressions () and (2®) over « we obtain the analytic
continuations (from the Matsubara frequencies) ofaj38nd (3%) respectively, i.e. in the
classical spin limit our CPA agrees with DMFT {8 (A) and T, (1). This is important since
DMFT is known to be exact for dimensidd = oo [13] and is perhaps the most natural local
approximation forD finite.

Similarly we can calculate the = + components of these Green functions within DMFT
as

PN st (Eny = (J/2)S%) (Eny + (J/2)S%) = (J?/H(L = (59?)
Spidlen) =g ;<ek del(A,) det(A,) > (4%
ooy = Lt (1 (592 Lt =By
I Oiwn) = 5 2 ;<e* (1— (59 )det(An)det(An/)> (400)

ands; = S — S}', etc. Now for a functiorg (z) analytic off the real axis
B glion) =I[g]

so applying this to tha’-summations in (48) we find

S ) s Bns = IS /DUy (89 + TS 1 (59/2) = (P /A)A = (S ()
T iw,) = (€ 2 2

(Ens + (J)2S)(Eny — (7/2)59) — (72/8) (1 — (597)

(41)
where
I (SZ)—I[ Ey ] (429)
1) =L B+ (1/25)(E, — (1/25) — (T2/HA— (57
1

LS =T . 42b
25 [<E¢+<J/2>Sz>(E¢—(J/2)sz>—(J2/4)<1—(Sz>2)] (420)

It may be shown using the sum rules §.and (1'b) that
(S (114 (8%) + J ST 12(85%)/2)) = ((S%)"n )



10524 A C M Green and D MEdwards

and
(J/2D((SH" (A - (59 (5%)) = —((S9)"S o)

for anym, so in (41) we can replade; (S°) +J S*I(S%) /2 withn | and(J /2) (1 — (892 I(5%)
with —S~o ™. A similar procedure can be carried out for (}0and we obtain

. . (En, — (J/2)S)n, +(J/2)S~o* >

St(h, iw,) = (€5 433
1 len) < (Ept + (J/2)SH)(E,, — (J/2)§7) — (J2/B(1— (59)?) (439)
IS : (J/2)((S)? = Dny — (Epy — (J/2)SH)S ot >

T )‘-a n) = eAS . 43b
(& deon) < (Enp + (J/2)SH)(En, — (J/2)§%) — (J2/4) (1 — (59)?) (430)

Itmay be seen thatthe DMFT and CPA expressionsjagree, buT;(A)|DMFT = Tf(x)|cpA.

This discrepancy, due to failure of the decoupling approximations made in the equation of
motion for7¢ [9], vanishes in the important limif — oo of strong coupling where adt = +

Green functions are zero.

5. The Curie temperature

Furukawa [14] finds that th8 = J = D = oo DE model exhibits a transition to ferro-
magnetism, and in section 4 it was shown that our CPA gives exact expressions for the
Green-function equations in this limit. However, in section 3 we showed that there is
no magnetic transition in our CPA (figure 1) and found unphysical behaviour &t 1
(figure 2). In this section we resolve this apparent discrepancy and postulate a modification
of our CPA that restores magnetic behaviour. We again work in the elliptic DOS case where
E,, =iw, — (W2/4)Ga(iwn)-

We first derive theS = J = oo DMFT static susceptibilityy. In this case

P(S) = (exp(,BhSZ) 1_[[(1 +SHYE; +(1— SZ)E,,l]>

-1
x < / d*S exp(BhS?) [ [l + S Enp + (1 - SZ)E,W]) (44)

as was shown in the previous section. The first-order deviati®¢s) of P(S) from its
zero-field paramagnetic state valug¢4x) is given by

SP(S) = <,8h + Z SE") S (45)

E, )4r
whereE, is the zero-field paramagnetic state value &Bgis the first-order deviation af 4.
From (28) we have in the present case, whére= W//2,

_ 0E,8(5%)
5Cno = 2E2 — W2/12 (46)
Substituting (46) into (45) usingE,, = —(W?/4)8G,,, then multiplying by S* and
integrating over the local spin orientation, we obtain
8(S*
N TNLUCY] CRULEEY WAL (@)

upon rearrangement. This gives the correct Curiejaw (1/3)(gus)?p atn = 0 andn = 1
and a transition to ferromagnetism for alht a temperature

keT = —(W2/12)Z[(2E% — W2/12)7}]
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whereE (¢) = € — (W?/4)G (¢) [14].

We now consider where the CPA calculatiomofias gone wrong and how to improve it.
The CPA equations for the Green functions are exact in the presentase/ (= o0), but
to solve them we need expressions for the expectatex®r5%)n, ), (€xp(AS?)S~?07), and
(exp(AS?)), as mentioned in section 2. Since the first two of these are obtained usifig the
sum rule, a procedure that is exact, the problem must lie with the determinatiexpof S<)).

Note that the way that we have calculatestp(1.S%)) only works forS finite, and to calculate
it at S = oo we have worked for finiteS and taken the limit at the end.

Now knowledge oflexp(1S%)) is equivalent to knowledge a?(S), so a possible way of
improving the CPA expression for is to abandon the above self-consistent determination of
(exp(AS$?)) and instead to use some expression#gs) that reduces to th& = co DMFT
result (44) in the classical spin limit. We have so far been unable to derive such an expression,
so we instead postulate a natural extrapolation of (44) to fihipestifying our formula by the
resulting behaviour of. This procedure will at least force the CPA fpito become exact in
theS — oo limit, and theS = co magnetic transition is likely to persist to finite

From theS — oo limit of (19a) and (1%) it may be seen that the quantity in square
brackets in (44) is related to the denominators of the Green-function equatioss-fex).

A natural extension of (44) is thus

P(S) = (eXp(ﬁhnSZ) [Jl@/2+5+5)E, +(1/2+5 - SZ)EnL])

-1
X <2n Z exp(BhnS?) ]_[[(1/2 +S+SYE, +(1/2+8 — SZ)E,N])
Sz n

(48)

wheren is chosen so as to optimize the behavioug ofThe explicit energy shifts associated

with the fields in E; andE | are ambiguous and have been neglected. However, some effect
of h on the double exchange enters through the Green functions and thejfaitavs for the
conduction electron contribution to the spin in the Zeeman energy. Then proceeding as above
we can calculate

2(1/3nBS(S +1) — BsI[G'/E] + (1/2)I[G']

x = (gus) 1-0/@5+1) +26sR (49)
wheres = (W?2/12)S(S + 1)/(25 + 1), Q is as in (2®), and
R - z[ ! _ ] . (50)
(2S + D E2 — ((2/3)S + hW?2/4

It is then easy to see that if we take= 1 + (n/2)/(S + 1) then the correct Curie laws

x = (gup)?’BS(S +1)/3 andy = (gus)?B(S + 1/2)(S + 3/2)/3 are obtained at = 0 and

n = 1 respectively. Note thefln = S +n/2 + O(1/S), so if we regard our extrapolation from

S = oo as a kind of 1S expansion this is a very natural value—it corresponds to the average
spin size in the system to leading order. With this form (49),fawe also obtain a magnetic
transition for allS at a temperature determined by

_ 2sR

T Q/@2S+1) -1
The Curie temperature is plotted against fillimdor variouss in figure 4 (top figure) below.
It agrees with Furukawa’s result in his caseSo& oo. Clearly for finitesS ferromagnetism

is more stable fon > 1/2 than forn < 1/2, in agreement with the findings of Brunton
and Edwards [18]. We have also calculafedvia the spin-wave dispersion in the (assumed)

keT (51)
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Figure 4. The Curie temperaturks Tc/ W calculated using the elliptic bare DOS plotted against
filling n for variouss (top figure), and the effect ofic for S = 1/2 of changing the bare DOS to
the 3D cubic DOS (bottom figure).

saturated ferromagnetic ground state, using a method similar to that of Sakurai [19, 20] for
the Hubbard model. The Curie temperature obtained is similar in magnitu@eindigure 4

and decreases with increasifigas is the case here famear 1. This work will be published
elsewhere.

Brunton and Edwards found that the stability of the spin-saturated stte-dl is strongly
dependent on the bare DOS used: approximating the true cubic tight-binding DOS with the
elliptic DOS qualitatively changed the form of their spin-flip excitation gap. Accordingly we
check the effect ofi of using the true tight-binding DOS. The bare elliptic and cubic tight-
binding DOSs and the corresponding full (zero-field paramagnetic statel, n = 1/2, and
J = o0) CPA DOSs are shown for comparison in figure 5 below. Now it is straightforward to
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zero-field paramagnetic state) DOSs.

extend the derivation of th&: equation to the case of a general DOS; the only effect on (51)
is to replaceW?/4 with (W /(W G))? + 1/ G’ inside theZ-functionals. Hence for general DOS

28(S+1) R

kele =355+t 0/25+1) -1 2
where
A I[ (W/(WG_))2 + 1/G/_ ] (533)
S+ D E2 - ((2/3)S+ H(W2/W2)((W/(WG))?+1/G)
0= z[ _ E } . (530)
E2 —v3(W2/W2)((W/(WG))?+1/G")

Note that for the elliptic DOS cagéV/(WG))? + 1/G' = W?/4. We plotTc obtained from
(52) in the most sensitive case & 1/2 in figure 4 (bottom figure) for the elliptic and cubic
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DOSs. It may be seen that changing the form of the bare DOS does not have a large effect on
Tc. The dip inTc nearn = 0.3 for the cubic DOS is interesting since near this filling Brunton
and Edwards [18] found an instability of the saturated ferromagnetic stase<fot/2.

6. Summary and outlook

In this paper we have extended our many-body CPA treatment [9] of the DE model to the
case of general and magnetization. In our original approach we were faced with 4
algebraic equations to solve for the Green functions in the case of non-zero magnetization. A
correspondingly large number of correlation functions had to be determined self-consistently.
Consequently in[9] we only consider8d= 1/2 for the magnetized state and subsequently [15]
calculated the paramagnetic susceptibility in this case. The generalization to arBifrary
section 2 of this paper is achieved by introducing generating Green functions involving a
parametern.. The 4S5 + 1 coupled algebraic equations are then replaced by a single first-
order linear differential equation ihwhose solution yields the CPA equations for the Green
functions. Only three correlation functions have to be determined, as functiongané two

of these may be obtained directly from the Green functions. The indirect determination of
the third (exp(1.5%)), from the approximate EOM for the Green functions, is less reliable. It
seems to be the origin of difficulties in section 3, where the paramagnetic susceptibility is
calculated for/ = oco. No ferromagnetic transition is found for anyor S and forn = 1

the correct Curie law, with spi§ + 1/2, is found only at high temperature. On the other
hand in section 4 it is shown that f6r = co, where dynamical mean-field theory has been
implemented [14], our CPA equations for the Green functions agree with DMFT. Furthermore,
DMFT leads to a ferromagnetic transition forOn < 1 and to a correct Curie law far= 1.

In section 5 this paradox is resolved by abandoning the apparently unreliable self-consistent
determination ofexp(1.5%)) and using instead a probability distributi®(S?) to evaluate the
required expectation values. The form®§S*) used for finiteS is a reasonable extension of

the form which arises in DMFT fof = oco. We then find a finite Curie temperatufe for

0 < n < 1, and correct Curie laws far = 0 and 1, for allS. Naturally the results agree with
DMFT for § = co. The maximum irf¢, as a function of band filling, moves fromm = 0.5

for § = oo to larger values of asS decreases.

This work completes our present study of the paramagnetic state and ferromagnetic
transition of the DE model within our many-body CPA. With some effort we could pursue
the calculations into the ferromagnetic state. However, this has already been dSne tar
within DMFT [14] and the rewards might be slight, particularly since for firfitthe CPA
never gives a ground state of complete spin alignment. It seems more profitable to repair
some defects of the DE model itself. One should include both coupling to phonons and the
double degeneracy of thg band. It is likely, as originally proposed by Millist al [4], that
phonon coupling is essential for an understanding of the insulator-like paramagnetic state in
the manganites. We showed [9] that, without phonons, the DE model gives much too small a
resistivity. The introduction of phonons is therefore a high priority and it is in fact easier to
include coupling to local phonons in our CPA approach than to consider degenerate orbitals.
This is our next objective.
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Note added in proofWe note that a similar use of the generating function form(e%p was made by Callen in a
Green-function decoupling scheme for the Heisenberg model [21].
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